r . 3. T	T . 3.T	3.6 . 1 1	
Last Name	Last Name	Matricola	

Messina, 15 June 2022

Exercise 1

Solve the given circuit below by using the mesh analysis for the three currents as indicated.

- a) Write the R matrix in analytical form.
- **b)** Compute the value of the mesh currents J_1 , J_2 and J_3 (clockwise sense) using the following values for $R_1 = 4 \Omega$, $R_2 = 6 \Omega$, $R_3 = 4 \Omega$, $R_4 = 8 \Omega$, $R_5 = 4 \Omega$, $E_1 = 2 V$, $E_2 = 5 V$, $E_3 = 4 V$, and $\alpha = -2 \Omega$; $[J_1 \rightarrow C-B-D-C; J_2 \rightarrow C-A-B-C; J_3 \rightarrow A-D-B-A]$

Exercise 2

Solve the given circuit below.

- a) Compute analytically the expression of the V_0 (help use the Millman theorem)
- **b)** Compute the value of V_0 considering the following parameters R_1 = 1 Ω , R_2 = 1 Ω , R_3 = 5 Ω , R_4 = 2 Ω , α = 1, E_1 = 10 V and E_2 = -5 V.

Exercise 3

a) For a given an RL circuit with R=2 Ω and L=0.5 H. Compute the current flowing into the inductor L after 100 ms $i_L(100 \text{ ms})$ considering that the current at t=0s flowing into the inductor is equal to 1A $(i_L(0)=1A)$.

Sign here	 	 	
Exercise 1:			
a)			
b)			
Exercise 2:			
a)			
,			
b)			
,			
Exercise 3:			
a)			

Solution 1

a)

$$\begin{pmatrix} R_1 + R_2 + R_4 & -R_1 & -R_4 \\ -R_1 & R_1 + R_3 + R_5 & -R_3 \\ -R_4 & -R_3 & 2R_4 + R_3 \end{pmatrix} \begin{pmatrix} J_1 \\ J_2 \\ J_3 \end{pmatrix} = \begin{pmatrix} -E_1 - E_2 \\ -\alpha I_1 + E_1 \\ \alpha I_1 + E_3 \end{pmatrix}$$

$$I_1 = J_1 - J_3$$

$$\begin{pmatrix} R_1 + R_2 + R_4 & -R_1 & -R_4 \\ -R_1 & R_1 + R_3 + R_5 & -R_3 \\ -R_4 & -R_3 & 2R_4 + R_3 \end{pmatrix} \begin{pmatrix} J_1 \\ J_2 \\ J_3 \end{pmatrix} = \begin{pmatrix} -E_1 - E_2 \\ -\alpha J_1 + \alpha J_3 + E_1 \\ \alpha J_1 - \alpha J_3 + E_3 \end{pmatrix}$$

$$\begin{pmatrix} R_1 + R_2 + R_4 & -R_1 & -R_4 \\ -R_1 + \alpha & R_1 + R_3 + R_5 & -R_3 - \alpha \\ -R_4 - \alpha & -R_3 & 2R_4 + R_3 + \alpha \end{pmatrix} \begin{pmatrix} J_1 \\ J_2 \\ J_3 \end{pmatrix} = \begin{pmatrix} -E_1 - E_2 \\ E_1 \\ E_3 \end{pmatrix}$$

b)
$$J_1 = -0.31 \text{ A}$$
; $J_2 = 0.08 \text{ A}$; $J_3 = 0.14 \text{ A}$

Solution 2

a) First of all we need to evaluate the V_{AB} . I will apply the Millman theorem and the voltage divider over the resistance R_3 and R_4 . The voltage V_{AB} is given by

$$V_{AB} = \left(\frac{E_1 / R_1 - E_2 / R_2}{1 / R_1 + 1 / R_2 + 1 / (R_3 + R_4)}\right) \frac{R_4}{(R_3 + R_4)}$$

The circuit with the OP AMP is a noninverting amplifier then we have

$$V_0 = \alpha V_{AB} \left(1 + \frac{R_2}{R_3} \right)$$

Vois given by

b)
$$V_0 = 2.4 \text{ V}$$

Solution 3

$$\tau = R / L = 4s$$

$$t = 100 ms$$

$$i_L(t) = i_L(0)e^{-t/\tau} = 1e^{-0.1/4} = 0.98V$$