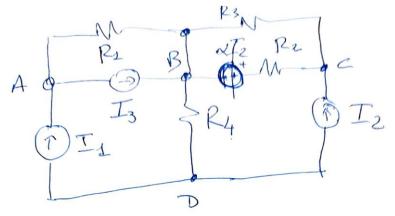
Last Name ____

Last Name

_ Matricola ___

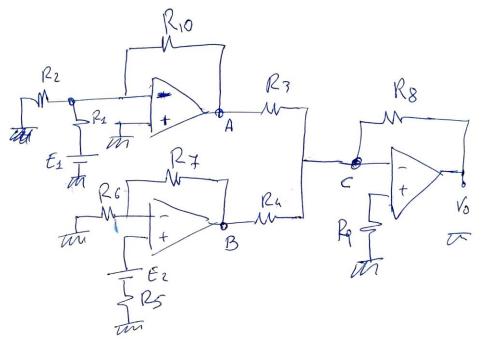

Messina, 29 June 2022

Exercise 1

Solve the given circuit below by using the node analysis considering D as a reference node.

a) Write the G matrix in analytical form.

b) Compute the value of the nodal voltage V_A , V_B and V_C using the following values for $R_1 = 1 \Omega$, $R_2 = 4 \Omega$, $R_3 = 2 \Omega$, $R_4 = 2 \Omega$, $I_1 = 2 A$, $I_2 = 1 A$, $I_3 = 4 A$, and $\alpha = 4 \Omega$; [Help: Consider the equivalence between voltage and current generators before to apply the node analysis]



Exercise 2

Solve the given circuit below.

a) Compute analytically the expression of the V_A , V_B and V_0 .

b) Compute the value of V₀ considering the following parameters $R_1 = 1 \Omega$, $R_2 = 2 \Omega$, $R_3 = 4 \Omega$, $R_4 = 6 \Omega$, $R_5 = 100 \Omega$, $R_6 = 8 \Omega$, $R_7 = 9 \Omega$, $R_8 = 12 \Omega$, $R_9 = 5 \Omega$, $R_{10} = 10 \Omega$, $E_1 = 2 V$, and $E_2 = -3 V$.

Exercise 3

a) For a given an RL circuit with R=0.5m Ω and L=0.5 H. Compute the current flowing into the inductor L after 200 μ s i_L(200 μ s) considering that the current at t=0s flowing into the inductor is equal to 1A (i_L(0)=5A).

Sign here _____

Exercise 1:

a)

b)

Exercise 2:

a)

b)

Exercise 3:

a)

Solution 1

a) Considering the equivalence between current and voltage generators, we have that the branch with the controlled voltage generator and the resistance R_2 in series are equivalent to a controlled current generator with a coefficient equal to α/R_2 with in parallel the same resistance R_2 . Mind that the term is with the current generator is a know value.

$$\begin{pmatrix} G_1 & -G_1 & 0 \\ -G_1 & G_1 + G_2 + G_3 + G_4 & -G_2 - G_3 \\ 0 & -G_2 - G_3 & G_2 + G_3 \end{pmatrix} \begin{pmatrix} V_A \\ V_B \\ V_C \end{pmatrix} = \begin{pmatrix} I_1 - I_3 \\ I_3 - \alpha G_2 I_2 \\ \alpha G_2 I_2 + I_2 \end{pmatrix}$$

b) $V_A = 4 V$; $V_B = 6 V$; $V_C = 8.667V$

Solution 2

a) The voltage $V_{\text{A}\text{,}}\,V_{\text{B}}$ and V_{0} are given by

$$\begin{split} V_A = & \left(\frac{E_1 R_2}{R_1 + R_2}\right) \frac{-R_{10}}{(R_{10} + R_1 R_2 / (R_1 + R_2))} & \text{(inverting amplifier); } V_B = E_2 \left(1 + \frac{R_7}{R_6}\right) & \text{(noninverting amplifier); } \\ V_0 = & V_A \left(-\frac{R_8}{R_3}\right) + V_B \left(-\frac{R_8}{R_4}\right) & \text{(inverting amplifier where you add the inputs).} \end{split}$$

b) V_A = -1.25 V; V_B = -5.25 V; V_0 =14.25 V;

Solution 3

 $\tau = R / L = 0.1ms$ $t = 200 \mu s$ $i_L(t) = i_L(0)e^{-t/\tau} = 4.0937V$